• 20 Nov 2017 4:15 PM | Anonymous member (Administrator)

    The Human Proteome Project continues to make major progress on identifying and characterizing the predicted protein products from all the protein-coding human genes. Using the stringent HPP Guidelines for Interpretation of Mass Spectrometry Data, we have reported that the community has now credibly detected 17,008 of the 19,587 neXtProt PE1,2,3,4 predicted proteins (87%). This curate result in neXtProt version 2017-01 is a substantial increase from one year earlier. That leaves 2579 “missing proteins”. The new Uniqueness Checker from neXtProt facilitates testing novel peptide sequences to see if they each uniquely map to a single predicted protein and qualify as “proteotypic”.

    Additional progress was reported in the Dublin HUPO Congress as early results from the Next50 Missing Proteins Challenge for all of the Chromosome-based HPP teams. Particularly notable were the following strategies: (1) focus on testis and sperm, the richest source of tissue-specific transcripts; (2) examine relatively understudied tissues and organs, like bladder and kidney; (3) achieve relative enrichment and equalization of abundance for low-abundance proteins by use of ProteoMiner hexapeptide-coated beads; (4) search GPMdb and PeptideAtlas for “stranded peptides” and then match their spectra to spectra of corresponding peptide sequences in the SRM Atlas (Kusebauch et al, Cell 2016); and (5) perform extensive biological, immunochemical, and siRNA studies on targeted proteins, like the differentiation of TBL1Y from TBL1X in gender-associated differentiation of cardiac myocytes. At least 73 additional missing proteins were brought forward from these studies.

    The Chromosome-centric HPP has launched a companion initiative to seek functional annotation of the 1232 PE1 proteins which currently have no such annotation. Meanwhile, the Biology and Disease-driven HPP teams are applying the popular proteins/targeted analysis strategy to liver, heart, and other organ-specific proteomes. And the MS Resource Pillar has developed a standard sample with 96 phospho-peptides made available to labs everywhere to facilitate progress on post-translational modifications, starting with phosphorylated sites.

    A total of 26 papers have appeared on line from the Journal of Proteome Research and will appear in the December 2017 hard-copy issue of the journal as the 5th annual special issue of the HUPO Human Proteome Project.

    Gilbert S. Omenn, MD, PhD, HPP Chair

  • 20 Nov 2017 4:09 PM | Anonymous member (Administrator)

    The Chromosome-Centric Human Proteome Project (C-HPP) was launched with the goal to catalogue the entirety of the parts list of the human proteome, specifically to find evidence at protein level of all human protein coding genes. C-HPP contributed with collaborating partners in developing guidelines for mass spectrometry data interpretation, with EBI to organize central data repository ProteomeXchange for proteomics experiences, to deliver stringent peptide and protein identification lists of human proteome from large-scale community deposited LC-MS/MS data in PeptideAtlas and with neXtProt to define 5 categories of protein evidence (PE1-5). In 2012, at the start of C-HPP, neXtProt included 20,059 protein entries, from which 13,664 had evidence at protein level (PE1), including 12,509 with mass spectrometry data. In January 2017, neXtProt accounted for 20,159 entries, from which 572 might correspond to non coding elements (PE5). C-HPP members, collaborating partners and the proteomics community found evidence at protein level (PE1) for 17,008 out of the 19,587 protein coding genes, from which 15,173 have mass-spectrometry evidence in PeptideAtlas, leaving to 2,579 missing proteins (MP) i.e. human protein coding genes with evidences at PE2-4 levels.

    Advancing the HPP

    At the Dublin HUPO congress and HPP Workshop, C-HPP PIs have made two important decisions for future directions.

    First, they resolved to extend the term period of C-HPP from 2022 to 2027 in an attempt to reflect the current progress as we face a slowing in discovery reflecting an increasing proportion of the MPs that are extremely limited in spatial and temporal expression and still evade detection. 2022-2027 will provide extra time to plan and execute the whole C-HPP plans as bench marked from the lessons of the Human Genome Project (HGP). In fact, Dr. Leroy Hood mentioned that HGP group had a similar experience and that they reviewed the progress every 5 year and redirected the HGP based on the progress made during the past years.

    Second, they launched neXt-CP50 challenge that is led by Young-Ki Paik, complementary to neXt-MP50 (see Figure 1), to characterize 1232 known PE1 which have no functional annotation as of 8-8-2017 (neXtProt). Details on the strategy and timeline will be available shortly for those 25 PIs who are involved in this campaign.

    Over the past 5 years, protein coding genes with protein evidence at PE1 level increased from 68.1% to 86.8% and finding evidences for the remaining MPs set a challenge for the proteomics community. To promote these efforts in early 2017, C-HPP launched a new campaign the neXt-MP50 challenge led by Chris Overall, which aims to find evidences for the remaining missing proteins. This campaign has the ultimate goal to find missing proteins by identifying types of human samples not analyzed yet by the proteomics community considering sample location, stimulus, diseases/health, age. By using novel sample preparation techniques such as proteominer, mass spectrometry proteomics profiling or bioinformatics technologies, the neXt-MP50 aims to uncover the remaining dark matter of the human proteome. Proteogenomics methods integrating genomics and proteomics data tightly is important to identify sequence variants of human proteins. Proteogenomics data integration is gaining momentum amongst the proteomics and genomics communities and has a central role in C-HPP. In the next phase, C-HPP is promoting the use of proteogenomics data integration to reveal the amino acid sequence space of the human proteins as well as to promote the identification of peptides with post-translation modifications regarded as an important source of structure variability of human proteins. Proteogenomics data integration, peptides with post-translation modification and next-MP50 challenge to find the evidences for the remaining missing proteins are the goals of the second phase of C-HPP, which is on the agenda for the next five years.

  • 08 Nov 2017 4:06 PM | Anonymous member (Administrator)

    Click here to read the full summary of the Human Proteome Project Post Congress Workshop in Dublin, Ireland.

  • 17 May 2017 11:36 AM | Anonymous member (Administrator)

    The 6th newsletter of the Chromosome-centric Human Proteome Project is now available online, read it here

    In this issue:

    • Editorial
    • C-HPP Leadership Update
    • C-HPP Principal PIC
    • A Brief Introduction Of New PIs and Plans
    • JPR SI Call For Papers
    • Working Group Formation of C-HPP
    • Briefings in the 2016 C-HPP Workshops 
    • Future C-HPP Workshops
  • 25 Jan 2017 1:08 PM | Deleted user

    The first issue of the 2017 B/D-HPP newsletter is now available online. Read it here.

    In This Issue:

    • HUPO 2016 in review
    • Growing HUPO through ECRs
    • Success Story - Cancer Moonshot at HUPO
    • Initiative Spotlight
    • Liver Human Proteome Project
    • Mitochondria Human Proteome Project
  • 04 Nov 2016 10:00 AM | Deleted user

    HUPO Chromosome-Centric Human Proteome Project (C-HPP) has recently published its 4th Special Issue of the Journal of Proteome Research (http://pubs.acs.org/toc/jprobs/15/11) which carries a total of 18 papers. This special issue highlights the progress on the C-HPP and its related projects in many aspects such as HPP Mass Spectrometry Data Interpretation Guidelines, 2016 HPP Metrics, Discovery of 267 Missing Proteins (currently 2930 proteins) and other biological aspects of newly identified proteins encoded by human chromosomes. 

  • 04 Dec 2015 3:26 PM | Anonymous

    12 more C-HPP articles are available in the December issue of the Journal of Proteome Research.

Copyright 2016 - HUPO

Powered by Wild Apricot Membership Software